Extensions 1→N→G→Q→1 with N=C2 and Q=C422D7

Direct product G=N×Q with N=C2 and Q=C422D7
dρLabelID
C2×C422D7224C2xC4^2:2D7448,931


Non-split extensions G=N.Q with N=C2 and Q=C422D7
extensionφ:Q→Aut NdρLabelID
C2.1(C422D7) = (C2×C42).D7central extension (φ=1)448C2.1(C4^2:2D7)448,467
C2.2(C422D7) = C425Dic7central extension (φ=1)448C2.2(C4^2:2D7)448,471
C2.3(C422D7) = (C2×C42)⋊D7central extension (φ=1)224C2.3(C4^2:2D7)448,474
C2.4(C422D7) = (C2×Dic7).Q8central stem extension (φ=1)448C2.4(C4^2:2D7)448,192
C2.5(C422D7) = (C22×C4).D14central stem extension (φ=1)448C2.5(C4^2:2D7)448,196
C2.6(C422D7) = (C22×D7).9D4central stem extension (φ=1)224C2.6(C4^2:2D7)448,209
C2.7(C422D7) = (C22×D7).Q8central stem extension (φ=1)224C2.7(C4^2:2D7)448,210

׿
×
𝔽